

Photoelectrochemical Chemical Oxygen Demand Analysis in Drinking Water

Amina Stoddart

Civil and Resource Engineering Dalhousie University

February 11, 2016

Introduction

- Natural organic matter (NOM) is a critical target for drinking water treatment
- NOM can be associated with
 - Taste, odour, colour issues
 - Coagulant, oxidant demand
 - DBP precursors
- We have a number of tools for bulk NOM estimation: DOC, TOC, UV₂₅₄, SUVA

Chemical Oxygen Demand (COD) Measurement in Drinking Water

- Traditional NOM surrogates may not be suitable for assessing NOM removal in all cases
 - $-UV_{254}$, SUVA
 - Rely on aromaticity, which is not a chemical feature of many organic compounds, example sugars
 - Carbon (e.g., as TOC, DOC)
 - Does not quantify the reactivity of the organic

What is Chemical Oxygen Demand?

0

What is Chemical Oxygen Demand?

0.

Why is COD not often used in Drinking Water?

- The traditional method for COD determination is to oxidize with potassium dichromate under acidic conditions
- Issues:
 - Sensitivity
 - Use of hazardous chemicals
 - Dichromate, mercury, surfuric acid
 - Analysis time
 - Hours

Photoelectrochemical COD (peCOD) Analysis

- Safe for operator
 - No hazardous chemicals
 - Single reagent (electrolyte)
- Takes 5-10 min
 - Can automate
 - Potential for online measurement
- Low range
 - MDL = 0.5 mg/L (using modified procedure)
- Uses green chemistry

 No hazardous wastes

Working Principle: peCOD

۰.

Technical Approach

- 1. Conducted initial method validation with model organic compounds
 - Compared peCOD of carboxylic acids, amino acids and reference compounds to the calculated theoretical oxygen demand (ThOD)
 - b. Verified peCOD applicability in the drinking water NOM range of concern
- 2. Tested technology at various drinking water treatment plants
- 3. Monitored full-scale drinking water biofiltration

Method Validation: Comparison of peCOD and ThOD for *Amino Acids*

Method Validation: Comparison of peCOD and ThOD for *Amino Acids*

Method Validation: Comparison of peCOD and ThOD *Carboxylic Acids*

Method Validation: Comparison of peCOD and ThOD *Carboxylic Acids*

Method Validation: Comparison of peCOD and TOC

 peCOD detectable at TOC concentrations characteristic of raw and treated water

```
- i.e., 1-5 mg C/L
```

- peCOD:TOC ratios were predictable based on stoichiometry of the oxidation reaction
 - i.e., oxygen to carbon ratio

Method Validation: Comparison of peCOD and TOC

 peCOD detectable at TOC concentrations characteristic of raw and treated water

- i.e., 1-5 mg C/L

- peCOD:TOC ratios were predictable based on stoichiometry of the oxidation reaction
 - i.e., oxygen to carbon ratio

Method Validation: Various Treatment Plants

Method Validation: Various Treatment Plants

Method Validation: Various Treatment Plants in Nova Scotia peCOD and TOC

Method Validation: Various Treatment Plants in Nova Scotia - peCOD and DOC

Method Validation: Various Treatment Plants in Nova Scotia – peCOD and SUVA

Case Study: Biofiltration Monitoring

Biofiltration Monitoring : Background

- Direct filtration drinking water treatment plant underwent conversion to biofiltration through removal of pre-chlorination
- Conversion resulted in
 - Reduction in HAAs (~40-60%) and THMs (~20-60%)
 - Increase in bioactivity on the filter media
 - 40 ng ATP/cm³ to 200-300 ng ATP/cm³
- However, limited DOC removal across the filter occurred, making it difficult to assess treatment performance

Decrease in THM and HAA concentrations as a result of conversion

Figure adapted from: Stoddart, A. K., & Gagnon, G. A. (2015). JAWWA.

0.

Biofiltration Monitoring : Approach

• Monitored NOM surrogates (TOC, DOC and peCOD) at 3 locations for a period of 9 months

Figure adapted from: Stoddart, A. K., & Gagnon, G. A. (2015). JAWWA.

Effect of Flocculation

- Limited removal of TOC
 TOC: 5 ± 4%
 - Includes flocculated material
- Similar removal of DOC and peCOD
 - DOC: 31 ± 4%
 - Does not measure flocculated material (0.45 µm filtration as sample preparation)
 - peCOD: 32 ± 3%
 - Assumed to measure only soluble portion

Effect of Biofiltration

- Greatest average
 removal of TOC
 - TOC: 29 ± 4%
 - Flocculated material filtered out
- Limited average
 removal of DOC
 - DOC: 2 ± 1%
- More peCOD removal
 peCOD: 19 ± 5%

Effect of Flocculation and Biofiltration

NOM Surrogate	Raw Water	Flocculated Water	Biofiltered Water				
TOC— <i>mg/L</i>	3.16 ± 0.13	3.00 ± 0.16	2.06 ± 0.07				
DOC— <i>mg/L</i>	3.04 ± 0.34	2.07 ± 0.06	2.09 ± 0.12				
peCOD— <i>mg/L</i>	8.51 ± 0.55	5.90 ± 0.46	4.64 ± 0.42				

Effect of Flocculation and Biofiltration

NOM Surrogate	Raw Water	Flocculated Water	Removal	Biofiltered Water	Removal
TOC— <i>mg/L</i>	3.16 ± 0.13	3.00 ± 0.16	0.16	2.06 ± 0.07	0.94
DOC—mg/L	3.04 ± 0.34	2.07 ± 0.06	0.97	2.09 ± 0.12	-0.05
peCOD— <i>mg/L</i>	8.51 ± 0.55	5.90 ± 0.46	2.61	4.64 ± 0.42	1.26

۰.

Source water SUVA:	Expected DOC Removal Using Alum	SUVA	
3.4 ± 0.1	>50%	>4	
Expected DOC removal with alum ¹ :	25-50%	2-4	
25-50%	<25%	<2	
	and the second s	a constant and a constant	~

Table. Adapted from Edzwald and Tobiason, 1999; ¹Edzwald and Tobiason, 1999

0

Decrease in THM and HAA concentrations as a result of conversion

Figure: Stoddart, A. K., & Gagnon, G. A. (2015). JAWWA.

Conclusions

- peCOD can measure NOM rapidly, at low concentrations and without the use of hazardous chemicals
- peCOD is an appropriate bulk NOM parameter
- The use of peCOD to monitor biofiltration may provide additional information on NOM removal and subsequent biofilter performance to compliment other NOM surrogates