Pecod[®] COD Analysis COD Results in 15 Minutes

Introduction

- COD and BOD
- Standard Method (Dichromate)
- New PeCOD[®] COD Method (Photo-Electrochemistry)
- Comparison of COD Methods
- PeCOD Applications
- Conclusion

About MANTECH

- Manufacturer of laboratory instrumentation solutions:
 - Automated multi-parameter
 - Titration
 - Biochemical Oxygen Demand (BOD)
 - Chemical Oxygen Demand (COD)

COD and BOD

- Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) are **ubiquitous measurements of overall water quality.**
- Among the most diagnostic parameters for the determination of water quality in natural waterways and waste streams.
- COD measures the equivalent amount of oxygen required to chemically oxidize the organic compounds in water
- BOD measures the equivalent amount of oxygen required to biologically (microbes) oxidize the organic compounds in water

COD and BOD

- The standard BOD test requires five days to complete unable to provide continuous monitoring of organic load.
- COD is often used for BOD screening.
- Both involve a 2 step process:

<u>Step 1</u> - Oxidation of organic matter

<u>Step 2</u> - Measurement of extent of oxidation

Standard COD Method (Dichromate)

- Uses hazardous chemicals (dichromate, concentrated acid, mercury) to oxidize organic carbon in water into CO₂ and H₂O.
- Samples are digested at 150°C, 2-3 hour process with cooling time
- The oxygen demand is determined by the amount of oxidant consumed, using a spectrophotometer or titration method.
- Overall measurement uncertainty, ≈ ±20-30 %

PeCOD® COD Analysis

- PeCOD is a new technology which measures soluble COD in various water samples.
- Directly measures photocurrent/charge originating from the oxidization of the organic contamination in a test sample.
- A UV-activated nanoparticle TiO2 (titanium dioxide) photocatalyst coupled to an external circuit.
- High Oxidation Potential (3.2eV) vs (1.6eV) for Dichromate

PeCOD[®] COD Analysis

Overcomes many of the problems encountered by existing COD analysis methods

- Fastest available method results in only 15 minutes
- Does not use dichromate or other hazardous reagents
- Can be used by all operations staff
- Excellent BOD screening tool

- "The new approach for measuring chemical oxygen demand by photo-electrochemical measurement eliminates the use of corrosive (H₂SO₄), carcinogenic (K₂Cr₂O₇), toxic (HgSO4) and irritant (Ag₂SO₄) chemicals for the analysis of chemical oxygen demand.
- Analysis time was significantly reduced and the method detection limit was 1 mg/L O_{2.}"

Vasile Furdui, Ph.D. Research Scientist, Ministry of the Environment and Climate Change.

Simplified Analysis Approach

Easy to use, "click and go" interface menu for all operations – analysis, calibration, flushing.

Small unit footprint requires minimal bench space (235 x 375 mm) and is light weight (5 kg).

Enhanced software package enables additional functionality, parameter sampling and reporting.

Nanotechnology based approach

- Patented sensor consists of a UV-activated TiO2 (titanium dioxide) photocatalyst
- Powerful oxidizing potential of TiO2 gives a true measure of COD
- COD analysis method of Ontario Ministry of Environment (method E3515)
- COD analysis can now be done by any operations staff member

PeCOD® Applications

Municipal

- Incoming COD monitoring
- In-plant COD monitoring
- Wet weather events
- Discharge compliance
- Potable water analysis

Industrial

- In-plant COD monitoring
- Process optimization
- Discharge compliance
- Fine avoidance

Laboratory

- COD analysis
- Multi-parameter
- Speed and accuracy
- Safety of employees

- "We moved from the COD vials to the PeCOD® primarily because it allowed us to run our process more efficiently and further adjustments to our process could be made up to ten times a day. With the COD vials, only 3 or 4 adjustments could be made. This increase in efficiency, not to mention the added benefit that we're no longer using carcinogenic chemicals to test for COD.
- We have also seen a reduction in cost of consumables and waste disposal."

Mark Westhorpe, Analytical Shift Leader, Vertellus Specialty Materials based in the United Kingdom.

City of Guelph WWTP

Plot of PeCOD COD (green range) and dichromate COD (low range vials) for various filtered waste water samples from various sampling locations (round 2 of testing).

Strong Correlation for Waste Water

Scatter plot of PeCOD COD (green range) and dichromate COD (low range vials) for various filtered waste water samples.

Strong Correlation for Waste Water

Scatter plot of PeCOD COD (red range) and dichromate COD for treated effluent samples analyzed by Clean Harbors (waste treatment facility)

Effective Surface Water Monitoring

watershed in Alberta, Canada.

coD (mg/L)

Strong Correlation for Surface Water

Scatter plot of PeCOD COD against total dichromate COD for surface water samples from the Athabasca watershed in Alberta, Canada.

Strong Correlation for Surface Water

Scatter plot of PeCOD COD (green range) and dichromate COD for 68 surface water samples analyzed by the MOE

More Effective Potable Water Analysis

- Dalhousie University study
- With PeCOD[®] analysis, removal of NOM is approximately 3.5x greater vs use of traditional surrogates such as TOC and DOC
- PeCOD[®] has expanded resolution, even when NOM removal is small
- Significant advantage of a rapid response time for analysis results
- Ideal for processes such as biofiltration and advanced oxidation that require more understanding of NOM removal

DOC-dissolved organic carbon,floc-flocculated water,

peCOD—photoelectrochemical chemical oxygen demand, TOC—total organic carbon

Strong Correlation for Potable Waters

Scatter plot of PeCOD COD (blue range) and TOC for various reference compounds analyzed by Dalhousie University

Conclusion

- Overcomes the weaknesses of traditional COD analysis
 - Results in only 15 minutes
 - No use of dichromate or harmful reagents
 - Easy to use system for all operations staff
- Nanotechnology provides more accurate measure of COD
- Excellent screening tool for BOD and high potential for NOM
- Recognized and used by the Ontario Ministry of Environment

